|
My research interest includes black-box optimizaiton algorithms:
|
|
PPP
AI for Science
Tianyi Chu, Hanhui Huang, Junxuan Fan, Yiying Deng, Tao Xu, Chao Qian, Ke Xue, H. David Sheets, Michael H. Stephenson, Yukun Shi, and Xudong Hou. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 670: 112976. |
FCS
Ren-Jian Wang#, Ke Xue#, Yutong Wang, Peng Yang, Haobo Fu, Qiang Fu, and Chao Qian. Frontiers of Computer Science. (A preliminary version has appeared at the 2nd Agent Learning in Open-Endedness Workshop at NeurIPS'23) |
PPP
AI for Science
Zhengbo Lu, Junxuan Fan, Bridget S. Wade, James Ogg, Laia Alegret, Peter M. Sadler, Michael H. Stephenson, Yukun Shi, Chao Qian, Ke Xue, and Peiyue Fang. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 669: 112929. |
PNAS
AI for Science
Han Hu#, Chao Qian#, Ke Xue#, Rainer Georg Jörgensen, Marco Keiluweit, Chao Liang, Xuefeng Zhu, Ji Chen, Yishen Sun, Haowei Ni, Jixian Ding, Weigen Huang, Jingdong Mao, Rong-Xi Tan, Jizhong Zhou, Thomas W. Crowther, Zhi-Hua Zhou, Jiabao Zhang, and Yuting Liang. Proceedings of the National Academy of Sciences, 2024, 121(35): e2401916121. PDF / Code TL;DR: We use AI techniques for estimating soil microbial derived carbon storage. |
IEEE TEvC
Ke Xue, Yutong Wang, Cong Guan, Lei Yuan, Haobo Fu, Qiang Fu, Chao Qian, and Yang Yu. IEEE Transactions on Evolutionary Computation. PDF / Code TL;DR: We provide an effective framework to solve heterogeneous human-AI coordination. |
TMLR
Cong Guan, Feng Chen, Ke Xue, Chunpeng Fan, Lichao Zhang, Ziqian Zhang, Pengyao Zhao, Zongzhang Zhang, Chao Qian, Lei Yuan, Yang Yu. Transactions on Machine Learning Research. |
FCS
Cong Guan, Ke Xue, Chunpeng Fan, Feng Chen, Lei Yuan, Chao Qian, and Yang Yu. Frontiers of Computer Science, 2025, 19(4): 194314. |
|
ICML
Rong-Xi Tan, Ming Chen, Ke Xue , Yao Wang, Yaoyuan Wang, Fu Sheng, and Chao Qian. In: Proceedings of the 42nd International Conference on Machine Learning (ICML'25), Vancouver, Canada, 2025. (A preliminary version has appeared at the 2nd Workshop on Foundation Models in the Wild at ICLR’25, Oral presentation) PDF / Code TL;DR: We leverage the embeddings of large language model to achieve universal offline optimization. |
ICML
Chengrui Gao, Haopu Shang, Ke Xue, and Chao Qian. In: Proceedings of the 42nd International Conference on Machine Learning (ICML'25), Vancouver, Canada, 2025. PDF / Code |
IJCAI
Lei Song, Chenxiao Gao, Ke Xue, Chenyang Wu, Dong Li, Jianye Hao, Zongzhang Zhang, and Chao Qian. In: Proceedings of the 34th International Joint Conference on Artificial Intelligence (IJCAI'25), Montreal, Canada, 2025 PDF / Code |
DAC
Yunqi Shi, Xi Lin, Siyuan Xu, Shixiong Kai, Ke Xue, Mingxuan Yuan, Chao Qian and Zhi-Hua Zhou In: Proceedings of the 62nd ACM/IEEE Design Automation Conference (DAC’25), San Francisco, CA, 2025. |
ICLR
Rong-Xi Tan, Ke Xue, Shen-Huan Lyu, Haopu Shang, Yao Wang, Yaoyuan Wang, Sheng Fu, and Chao Qian. In: Proceedings of the 13th International Conference on Learning Representation (ICLR’25), Singapore, 2025. PDF / Code |
AAAI
Oral
Erlong Liu, Yu-Chang Wu, Xiaobin Huang, Chengrui Gao, Ren-Jian Wang, Ke Xue, and Chao Qian. In: Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI'25), Philadelphia, PA, 2025. |
DATE
Best Paper Award
Yunqi Shi, Siyuan Xu, Shixiong Kai, Xi Lin, Ke Xue, Mingxuan Yuan, and Chao Qian. In: Proceedings of 2025 Design, Automation & Test in Europe Conference & Exhibition (DATE'25), Lyon, France, 2025. TL;DR: We provide an effective timing-driven global placement algorithm. |
NeurIPS
Ke Xue, Ruo-Tong Chen, Xi Lin, Yunqi Shi, Shixiong Kai, Siyuan Xu, and Chao Qian. In: Advances in Neural Information Processing Systems 37 (NeurIPS'24), Vancouver, Canada, 2024. PDF / Code TL;DR: We provide a new paradigm of reinforcement learning for macro placement. |
NeurIPS
Spotlight
Shukuan Wang#, Ke Xue#, Lei Song, Xiaobin Huang, and Chao Qian. In: Advances in Neural Information Processing Systems 37 (NeurIPS'24), Vancouver, Canada, 2024. PDF / Code TL;DR: We can transfer information from diverse source tasks to help the optimization of target task. |
ICML
Ke Xue#, Rong-Xi Tan#, Xiaobin Huang, and Chao Qian. In: Proceedings of the 41st International Conference on Machine Learning (ICML'24), Vienna, Austria, 2024. PDF / Code TL;DR: We formulate and provide the first benchmark for offline multi-objective optimization. |
ICML
Ren-Jian Wang, Ke Xue, Cong Guan, and Chao Qian. In: Proceedings of the 41st International Conference on Machine Learning (ICML'24), Vienna, Austria, 2024, pp.51984-52001. PDF / Code |
IJCAI
Chao Qian, Ke Xue, and Ren-Jian Wang. In: Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI'24), Jeju Island, Korea, 2024, pp.6994-7002. TL;DR: We give the first theoretical explanation of the superior optimization ability of quality-diversity algorithms. |
IJCAI
Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. In: Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI'24), Jeju Island, Korea, 2024, pp.6914-6922. PDF / Code |
DAC
Ke Xue#, Xi Lin#, Yunqi Shi, Shixiong Kai, Siyuan Xu, and Chao Qian. In: Proceedings of the 61st ACM/IEEE Design Automation Conference (DAC'24), San Francisco, CA, 2024. (Work-in-Progress poster) |
ICLR
Spotlight
Ke Xue# , Ren-Jian Wang#, Pengyi Li, Dong Li, Jianye Hao, and Chao Qian. In: Proceedings of the 12th International Conference on Learning Representations (ICLR'24), Vienna, Austria, 2024. PDF / Code TL;DR: We decompose and coevolve solutions to improve the sample efficieny of QD algorithms. |
AAAI
Xiaobin Huang, Lei Song, Ke Xue, and Chao Qian. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI'24), Vancouver, Canada, 2024, pp.12635-12643. PDF / Code |
NeurIPS
21st ACM SIGEVO Humies Bronze Award
Yunqi Shi, Ke Xue, Lei Song, and Chao Qian. In: Advances in Neural Information Processing Systems 36 (NeurIPS'23), New Orleans, LA, 2023. PDF / Code TL;DR: We provide a new paradigm of black-box optimization for chip placement. |
IJCAI
Ren-Jian Wang, Ke Xue, Haopu Shang, Chao Qian, Haobo Fu, and Qiang Fu. In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI'23), Macao, SAR, China, 2023, pp.4335-4343. PDF / Code |
UAI
Ziqian Zhang, Lei Yuan, Lihe Li, Ke Xue, Chengxing Jia, Cong Guan, Chao Qian, and Yang Yu. In: Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI'23), Pittsburgh, PA, 2023, pp.2465-2476. |
AAAI
Oral
Lei Yuan, Zi-Qian Zhang, Ke Xue, Hao Yin, Feng Chen, Cong Guan, Li-He Li, Chao Qian, and Yang Yu. . In: Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI'23), Washington, DC, 2023, pp.11753-11762. PDF / Code |
NeurIPS
Spotlight
Ke Xue#, Jiacheng Xu#, Lei Yuan, Miqing Li, Chao Qian, Zongzhang Zhang, and Yang Yu. In: Advances in Neural Information Processing Systems 35 (NeurIPS'22), New Orleans, LA, 2022. PDF / Code TL;DR: We can effectively adjust all the hyperparameters of the optimization algorithm online. |
NeurIPS
Spotlight
Lei Song#, Ke Xue#, Xiaobin Huang, and Chao Qian. In: Advances in Neural Information Processing Systems 35 (NeurIPS'22), New Orleans, LA, 2022. PDF / Code TL;DR: We can adaptively select effective variables for high-dimensional optimization. |
ICLR
Yutong Wang#, Ke Xue#, and Chao Qian. In: Proceedings of the 10th International Conference on Learning Representations (ICLR'22), Virtual, 2022. PDF / Code |
IJCAI
Ke Xue, Chao Qian, Ling Xu, and Xu-Dong Fei. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI'21), Virtual, 2021. PDF / Code TL;DR: We provide an evolutionary gradient algorithm with theoretical guarentee. |
IJCAI
Chao Qian, Hang Xiong, and Ke Xue. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI'20), Yokohama, Japan, 2020, pp.3044-3050. |